Models

Alex Sverdlov
alex@theparticle.com

1 Introduction

Data Science is all about building models. Without models we don’t have a science, we just
have data. Actually, without models we’re basically doing statistics. But what are these
models we speak of? A model is a description of something—often much simpler description
than the thing it is trying to describe.

This “model is a description” business implies that there’s a language to describe things.
It also implies an implementation: we must be able to check whether something satisfies the
description.

One way to describe and verify things is to write them down. For example, a character
string “2”7 describes a number 2. If we look at character string “3” we know it is not a
number 2. Looking at another character string “2” we can verify that it is a number 2.

What string would we write for square root of 27 How about “square root of 2”7 or
shorthand: /2. Notice how we changed the language: we cannot write down the digits for
V2 because it is irrational, so we invent notation in which we can write it down. Similarly,
we can also write down 7 as “ratio of diameter to circumference of a circle”.

Unfortunately the trick of inventing notation doesn’t get us very far. Most things are
beyond our representation—similar to how we cannot write down irrational numbers. Even
if we use English (or anything else) to describe them.

The models we can build must be: finite (in description size) and computable (running
time is finite). Notice how that limits the things we can describe. Everything outside of
that is forever beyond our capabilities to even talk about (well, except the way we're doing
it now; e.g. we can write down ‘infinity’ as a word, or a symbol c0).

Just look at any math book. All problems are finite. All problems are solvable in finite
time. The building blocks are vertices, vectors, equations of lines, circles, polynomials, etc.,
functions such as sines, cosines, square roots, etc. There are no arbitrary curves or shapes—
only those that can be described in finite number of characters on a page.

Computer science too has its own set of description based limitations: every function is a
mapping from input to output. Yet there are infinitely more input-to-output mappings than
there are programs. In other words, there are functions that cannot be described /computed
by a program. So when we’re programming, such functions represent things that we just
can’t write a program for.

alex@theparticle.com

To bring the discussion back to models: Our model description language will be made
out of simple building blocks, such as vertices, vectors, linear equations, geometric objects
(circles, rectangles, etc.), logic statements, etc. Models will combine these in several different
ways, but always keeping the full model description finite and computable.

Another requirement of a model: it is desirable to have a model that we can learn or
adjust from data. This is the reason why many models are trivially simple: it’s easy to
adjust them using data.

2 Location

One of the simpler models is to just record the midpoint of the data. Mean, or average,
provides a typical (average) example of the data. We compute it via:

We often use pu to refer to population mean, and = to sample mean. They are both computed
in the same way.

The Law of Large Numbers tells us that sample mean approaches population mean. That
means that the difference ¥ — p approaches zero as we sample more values.

Mean is considered a measure of ‘location’ of the data: mean is often used as the center
of the dataset.

Another measure of location is percentile; it is a value which bounds a certain percentage
of observations. For example, for 95th percentile, 95% of values are below it and 5% are
above. One straight forward way to calculate it is to sort the dataset, pick a value right
below and right above the desired percentile, and then do a weighted average.

Median is just 50th percentile; it is the middle value (or weighted average of the two
middle values). It is often used as a more stable version of the ‘center of the dataset’.

Geometric Mean

Another way of defining a mean is by using a product, as opposed to the sum:

L)

For problems involving products, it is often more appropriate to use geometric mean rather
than the traditional arithmetic mean.
For example, when discussing investments, last 3 years investment returned:

yearl : +35%, year2 : +35%, year3 : —70%

The arithmetic mean (or “average” return, as some financial publications would have it):
(354354 —70)/3=0
The geometric mean is:
((1+0.35) % (1 +0.35) % (1 + —0.70))/% = 0.81770

Notice that the geometric mean more accurately describes the situation: the investment is
losing money, hardly “0% average return”.

Dispersion

While the average/median tells us where the data is (where the center is), it doesn’t tell us
how spread out it is. We get that from variance:

1 n
0% = EZ(% —)’
=1

or sample variance:

1
2 —\2
s° = (x; — T)
(n—1) ; ‘
Notice the difference between 0% and s2. The basic idea is that since we are not dealing with
the whole population, we know sample variance has to be higher than population variance;
the extra factor adjusts for that uncertainty:.
The standard deviation is just a square root of variance:

o =Vo?

Replace o with s to get sample standard deviation.
Just as with mean vs median, there is also interquartile range: is it the range of the
middle 50% of the values; in other words, 75th percentile minus 25th percentile.
There’s also coefficient of variation, which is a percentage measure:
S

cv = — x 100%
z

Standard error is: 5

se = —
NLD

A normal distribution with mean 0 and standard deviation of 1 is known as: Z distribution.

It is used to normalize the dataset, and allow for direct comparisons of different magnitude

data:

Practically, we often do not want to calculate z before calculating variance. We can fix
that with a bit of algebra:

2 1 i(% —)2 _ D it x; — (> i) /n

(n—1) & (n—1)

The above formulation means that in order to calculate mean and standard deviation (or
z-scores), we need to keep track of only: N, Yz, and > 2%

Another thing worth mentioning is absolute deviation: instead of summing over squares
of differences, we can sum over absolute values of differences.

Covariance & Correlation

Variance can be extended to more than one variable via covariance:

cov(z,y) = (x — z)(y —)

Covariance matrix is symmetric. Off-diagonal elements determine the amount of covariance
between variables.
If we normalize covariance (divide it by standard deviations of and y) we get correlation:

corr(z,y) = cov(z,y)/sd(z)sd(y)

To compute correlation in a single pass, we can write it as:

corr(w,y) = (E(x +y) — E(x) * B(y))/(V/B(2?) — E(x)? * /E(y?) — E(y)?)

where E(z) is the expected value of z. Correlation matrix is symmetric, with every elements
being in the -1 to 1 range.

Covariance is often used as a quick way to fit 2D lines to points. For example, a slope of
a 2D line is:

slope(x,y) = cov(z,y)/var(y)

The y-intercept is:
intercept = avg(x) — slope(z,y) * avg(y)

Central Limit Theorem

The sample distribution of sample means will approach the normal distribution. Note that
the theorem does not say which distributions we start out with—they will all approach the
normal distribution.

Simple Novelty Detection

With a few assumptions (many of which are often ignored in practice), z-scores (e.g. standard
deviation) can be used to detect unusual samples. For example, if a z-score is above 2, then
that sample is “unusual”, in a sense that (if our assumption of normal distribution pans out)
it is unlike 95% of the other samples. If z-score is above 3, then it is about 99%. With such
measurements, we can convince ourselves that the stock market crash of 2008 occurs once
every few million years.

This kind of novelty detection can be applied online: maintain a window of count, sum,
and sum of squares of (perhaps 20 minutes, or 20 days, etc. Then using these you can
calculate average, and standard deviation (or z-scores), and then quickly apply the novelty
check towards the previously unseen sample.

3 k-Nearest Neighbors

We can record the entire tranining set, and assume that there’s continuity between those
recordings. The k-NN method is often described as “model free”, but it’s anything but. The
records that are saved define the space between records that we can sample. To classify a
previously unseen instance, k-NN searches the database of saved instances to find k nearest
ones (by some measure of distance). A majority vote by the k nearest instances determines
output class.

The “model” here is the saved instances—and the assumption that locality matters
(things that are close to a certain label probably also have the same label).

The k-NN is a model that records list of instances, with an assumption to interpolate
between instances upon retrieval.

4 Linear Models

Another way to model things is to use linear equations. The basic idea is that things can be
summarized using lines (or hyperplanes). Similarly, different classes may be split using lines
or hyperplanes.
For both of these, we need to be able to solve linear equations. An example may be: find
a line that passes through points (2,13) and (3,17). We need to solve for a and b in the
below equations:
2a+b=13

3a+b=17

Such things are easier to write in matrix form:

3] Le] =[]

What we have is a classic equation: Xw = y, where we need to solve for w. Rearranging
things a bit, we end up with two solutions for w!:

w=(XTX)"'XTy
w=X"(XX""y

With these, we learn that w is:

In other words, the line is: 4x 4+ 5 = y.
We can use this method to solve any such linear system! Often, the matrices X7 X or
X X7 will not be invertible—so we modify the solutions to always create invertible matrices:

w=(X"X+\)"'X"y

w=X"(XXT+)y

Here, I is an appropriately sized identity matrix, with A\ being a small constant, such as
0.001.

Why are there two solutions, and which one would we use? That depends on the shape of
our problem: Let us do a slightly more complicated example: find a line that passes through
points (2,13), (3,17), (5,23), (7,29), (11,31), (13,37). We need to solve for a and b in the
below equations:

2a+b=13
3a+b=17
ba +b=23
Ta+b=29
1la+b=31
13a +b =37

!The least squares loss function is derived from an assumption that the sample data set S is generated by
a smooth function with Gaussian noise. The probability of the sample data S, is a product of probabilities
of individual points, which is proportional to

where ¢ is the sample data standard deviation, which we assume to be constant. Maximizing this probability
is equivalent to minimizing the negative of its logarithm, which is equivalent to the sum of squares loss
function.

Rewriting in matrix form:

1 2 13
1 3 17
15 b | |23
17 a| |29
1 11 31
| 1 13] | 37 |
Plugging in solutions for w, we get:
11.4437
1.9836

In other words, the line is approximately: 1.9836x + 11.4437 = y. Notice that this line does
not fit any of the points perfectly, yet it approximately fits all of them! So why the two
solutions? The X7 X, or primal solution, needs to invert a 2 x 2 matrix, while the X X7,
or dual solution, needs to invert a 6 x 6 matrix—in this case, doing the primal solution is
much faster. For situations when we have few points in many dimensions, solving the dual
solution is often faster. For example:

1 235 7 & 1
1 35 7 11 b | =1 —1
1 5 7 11 13 1

Solving for w is much simpler via the dual method (X X7) as it only requires inverting a
3 x 3 matrix, and not the 5 x 5 matrix required by the primal (X X) solution. The solution

by either method is
1.627295

—0.075596
—1.320899
1.476102

—0.556916

Notice that the above isn’t a line; but a hyperplane!

Non-Linear Embedding

Now for a bit of magic: this linear method can fit non-linear functions, via the process of
embedding. For example, if we want to fit y = Be?®, we can take log of both sides to get
In(y) = Az + In(B), which is linear. Now we simply use that form in X and y and what
we're fitting will be the non-linear y = Be4?.

Similarly, to fit power function y = B x 2* we can take log of both sides to get In(y) =
In(B) + a * In(x), which is now linear.

This embedding is very powerful. The idea is to embed non-linear data into some higher
dimensional space that perhaps has linear structures, and then use a linear solver.

7

To fit polynomials we “embed” higher dimensions that are powers of x. For example,
instead of

— o e e
— ~J Ot W o

from example above, which would fit a line, you can fit a 3rd degree polynomial just by
tweaking that matrix to be:

(12 22 28]
13 3 3
15 5 5
17”7
111 112 118
113 132 13° |

The resulting solutions will have the form y = D + Cz + Bx* + Az3. This can be extended
to any degree polynomial we care to fit.

Kernel Trick

The embedding procedure can be avoided by noticing X X7 in the primal solution for w.
The X X7 can represent the kernel function, such as inner join of ith row with jth row, or
such inner join squared, etc.

The kernel ‘trick’ is that treating X X7 as a kernel often allows for very complicated
non-linear embeddings—even into infinite dimensions—without us ever actually calculating
the embedding itself.

Interpolation & Extrapolation

Once we get the ‘line’ (or polynomial, or hyperplane, etc.), what can we do with it? Well,
we can fill in missing values—for sample, lets say we have values from 1 to 100, but we have
some gaps in the middle of the dataset. We can fill those in simply by plugging the values
into the ‘line’ (or whatever we’ve fit). That is called interpolation.

The other thing we can do is project our queries outside the sample used to fit the line.
For example, we've fit an exponential curve to earnings data for the last 2 years, and we
would like to guess what the earnings will be next quarter. This is called extrapolation—and
is often much less precise than interpolation.

Least Squares Discriminator

While the ‘least squares’ method described above is used primarily for interpolation and
extrapolation, a similar technique can be used for classification. Given a training set:

S={(xzi,),..., (L, y)}

where y; € {—1,+1} indicates the class. Our model is a hyperplane, with weights w, and
distance D, such that:
w1y + - +wyey =D

With such a hyperplane, we get a notion of things being in ‘front’ of the plane and in the
‘back’ of the plane. If we plug « into the plane equation (represented by w and D), and get
a positive value, then « is in front of the plane, etc.

To turn this problem into the ‘least squares’ problem described above consider the dual
solution. We only used the inner products to find the interpolating line. Now we need to
incorporate the y; values into that Gram matrix. What we end up with is known as a Hessian
matrix:

H;j = yiyjz,x;

Notice that the H matrix is essentially the kernel multiplied by y;y;, e.g.
H;; = yiyjK<mz'7 wj)

This allows for non-linear classifiers.
We can obtain a KKT (Karush-Kuhn-Tucker) system:

0ly" | [=D]_[O

y| H a | |1
where y = (y1,...,y5), 1 = (14,...,1;), H is the Hessian matrix, and a = (s, ..., ayp) are
Lagrange multipliers. We can then solve for w via:

w=X"]a x y]

where a X y is an element-wise multiplication.

Maximum Margin Classifier

In general, we want as much separation between classes as possible—we want the classifier
to find the maximum buffer. More on this in class.

Support Vector Machines

SVMs are not really machines. They are maximum margin classifiers, with other nice fea-
tures.

One of the major problems with the least squares method is that it becomes impractical
with a relatively low number of samples. For N input samples, we would need an N by N
Gram matrix, with most matrix multiplications taking O(N?3) operations—consider a modest
problem with 10000 samples to get an idea of how quickly this becomes impractical.

This is where Support Vector Machines come in. SVMs are binary classifiers, identical
to least squares discriminator in every way, except they don’t use all the input samples for
training. The important points, as far as classification is concerned, are the ones on the
boundaries. If we use just the boundary points, the classifier will be just as good as if we
used all the points. The big question now is how to find the boundary points.

Most SVM algorithms have a notion of ‘working set’; where, in every iteration, the
algorithm picks a ‘working set’ of input points to use for training. The working set is generally
relatively small. Some techniques pick points for the working set which have the maximum
influence on the resulting classifier (essentially picking inputs with the corresponding largest
Lagrange multipliers). Google for SMO algorithm.

SVMs are often used in conjunction with kernels.

5 Hyperplanes

Linear models capture a lot of the model building blocks: anything that can be formed by
combining a few hyperplanes can be described by linear models.

For example, a decision tree partitions the concept space in axis aligned hyperplanes. A
neural network is essentially many layers of hyperplanes. etc.

6 Mean Classifier

Another way to model things is by recording the center point, and some sort of threshold.
Which leads to a mean classifier. The mean classifier is perhaps the simplest: we find the
mean of all positive (label 4+1), and negative (label -1) samples. We can then compare new
samples to the two means, and pick closest one.

7 Conclusion

So in the end, we’re building models that are essentially points, histograms, hyperplanes,
hyper-spheres, or table-lookups. We can combine these in all sorts of ways, but in the end,
these are the building blocks out of which nearly all models we work with get built.

10

