CISC 7700X Midterm Exam 1. b 2. c 3. b 4. d 5. d 6. 1000^11 for(all values of A) for(all values of B) for(all values of C) ... etc. 7. 0.75 all outcomes: 0 wins: 0.125, e.g. $1 * 0.5 * 0.5 * 0.5 1 wins: 0.375,0.375,0.375 2 wins: 1.125,1.125,1.125 3 wins: 3.375 median is (0.375+1.125)/2 = 0.75 8. 0.649519 eg. exp((log(0.125)+3*log(0.375)+3*log(1.125)+log(3.375))/8) 9. 1. all outcomes: 0 wins: 0.125, e.g. $1 * 0.5 * 0.5 * 0.5 1 wins: 0.375,0.375,0.375 2 wins: 1.125,1.125,1.125 3 wins: 3.375 mean is (0.125 + 3*0.375 + 3*1.125 + 3.375)/8 = 1 10. c 11. c 12. d 13. b 14. e, identify, that' show conditional probability is defined. 15. 0.4000 Given: P(U) = 0.1, P(-U) = 0.9, P(F|U) = 0.6, P(F|-U) = 0.1 P(U|F) = P(F|U)P(U) / P(F) = P(F|U)P(U) / ( P(F|U)P(U) + P(F|-U)P(-U) ) = (0.6*0.1) / (0.6*0.1 + 0.1*0.9) = 0.4000 16. 0.4706 Given: P(U) = 0.1, P(-U) = 0.9, P(I|U) = 0.4, P(I|-U) = 0.05 P(U|I) = P(I|U)P(U) / P(I) = P(I|U)P(U) / (P(I|U)P(U) + P(I|-U)P(-U)) = (0.4*0.1) / (0.4*0.1 + 0.05*0.9) = 0.4706 17. P(U|F,I) = P(F,I|U)P(U) / P(F,I) = P(F,I|U)P(U) / (P(F,I|U)P(U) + P(F,I|-U)P(-U)) Cannot calculate; we do not know P(F,I|U) and P(F,I). 18. 0.8421 P(U|F,I) = P(F|U)P(I|U)P(U) / P(F)P(I) = P(F|U)P(I|U)P(U) / (P(F|U)P(I|U)P(U) + P(F|-U)P(I|-U)P(-U)) = (0.6*0.4*0.1) / (0.6*0.4*0.1 + 0.1*0.05*0.9) = 0.8421 19. what if nobody got vaccinated? 20. c