
Hyperplanes

Alex Sverdlov

alex@theparticle.com

1 Hyperplanes

A hyperplane is a fancy name for a ‘plane’ in N -dimensions: this is just a line in 2D, and a

plane in 3D as illustrated in Figure 1.

−10 −5 0 5 10

−20

−10

0

10

20

−10 −5 0 5
10−10

0

10

−20

0

20

Figure 1: A line in 2D: Ax+By = D, and a plane in 3D: Ax+By + Cz = D

This can be extended indefinitely. To avoid running out of variables, we often write the

plane as:

w1x1 + w2x2 + · · ·+ wnxn = D

and to avoid that awkward D at the end, we often create w0 = −D and always set x0 = 1.

That way the whole thing becomes:

w0x0 + w1x1 + · · ·+ wnxn = 0 in vector notation: wTx

1

alex@theparticle.com

1 2 3 4 5 6

1

2

3

4

5

Figure 2: Dividing Line: −x+ 2y − 2 = 0.

To check if a point x is exactly on the hyperplane we check wTx = 0. To check if the point

is in front of the plane, we check for wTx > 0, and back of the plane as wTx < 0.

For example, Figure 2, we have: −x + 2y − 2 = 0. That is, w1 = −1, w2 = 2, and

w0 = −2. Testing point (2, 4) against it we get −(2) + 2(4) − 2 > 0, or front of the line.

That is, x1 = 2, x2 = 4, and we always set x0 = 1. Doing an inner product wTx > 0. The

second point (3, 1) is checked the same exact way:

[w0, w1, w2]×


x0

x1

x2

 = [−2,−1, 2]×


1

3

1

 < 0

Because wTx (or (−2×1)+(−1×3)+(2×1)) is less then zero, we know (3, 1) is on the back

of the line. This is really the power of hyperplanes—they are a convenient linear modeling

tool. The notion of front vs back is arbitrary (we can always flip the ‘direction’ of a line by

multiplying all weights by −1).

2

1.1 Perceptrons

Perceptrons are literally hyperplanes, oriented in any direction. This power comes at a cost

of readability—unlike decision trees, it is very hard to figure out what, if any, meaning exists

in a hyperplane.

The idea of artificial neurons dates back to McCulloch & Pitts (1943) [?], when they

proposed using an artificial neuron for computation—defining a mathematical abstraction

of a biologically inspired neuron.

The McCulloch & Pitts neuron contains a set of real valued weights (w1, . . . , wn) and

accepts (x1, . . . , xn) as input (without the x0 = 1, that is handled separately by threadhold).

The function it applies is:

o(x) = step(xTw) step(x) =

 1 if y ≥ threadhold

0 otherwise

where xTw is the inner product of x and w column vectors, and step a linear step function

at threshold. The wi values are normalized to a (0, 1) or (−1, 1) range, and both inputs and

outputs are binary. See Figure 3.

Simple as they are, arrangements of such neurons were shown to compute any binary

function. The inability to calculate XOR function (famously presented as a major limita-

tion by Minsky & Papert (1969) [?]) is only applicable to a single layer of neurons. Since

a neuron is a hyperplane, it cannot split XOR since that is not linearly separable, see Fig-

ure 4. Layering perceptrons into networks (as McCulloch & Pitts have done in their paper)

overcomes this limitation.

McCulloch & Pitts did not define any training method; like programming, one had to

adjust the neuron weights to compute different binary functions.

Perceptrons were developed by Frank Rosenblatt in 1958. [?] Heavily based on the

3

Activation
function

∑
w2x2

...
...

wnxn

w1x1

w01

inputs weights

Figure 3: The Perceptron. Thought different models differ in detail, they all follow this
general approach. (picture by m0nhawk on TEX StackExchange)

0 1

1

Figure 4: The XOR function. There is no single line that can separate the filled circles from
non-filled ones.

4

McCulloch & Pitts neuron, this model used more flexible weights, and had an adaptive

component. A perceptron is a function:

o(x) = sign(xTw) sign(x) =

 1 if y ≥ 0

−1 otherwise

where xTw is the inner product of input x and weight vector w. The first input x0 is always

assumed to have value 1, and weight w0 is the corresponding threshold.

Training a perceptron is iterative. For every training sample (x, y) we adjust the weights

by

wi = wi + λ(y − o(x))xi

The y−o(x) gets the classification error (or 0 if no error was made on the training example).

The adjustment is then weighted by learning rate parameter λ and input xi. In other words,

if there was an error, and input xi was tiny, we want to make a tiny adjustment to wi. If xi

was large, then we want to make a similarly large adjustment to wi.

For example, suppose the training example has x = 2 and y = 1, and our perceptron

is w = −1 with 0 threshold. The o(x) is threfore −1. We need to adjust weight upwards

(governed by y− o(x), in our example 1− (−1) = 2) by some fraction λ (perhaps set to 0.1)

of x. Therefore we adjust weight by:

λ(y − o(x))xi = 0.1× (1− (−1))× 2 = 0.4

A limitation of the above learning rule is that there is no notion of good w beyond

the correct or incorrect value of 1 or −1, see Figure 5. If the sets are not separable, the

perceptron will semi-randomly stumble in adjusting the weight vector until stopped. It is

not a robust algorithm by any means, but it was a good start in the right direction.

5

1 2 3 4 5 6

1

2

3

4

5

Figure 5: The perceptron learning rule will not adjust weights once they produce the correct
classification—in other words, the different lines in this figure are all equally correct.

1.2 Delta Rule

Bernard Widrow (1965) [?] and Ted Hoff came up with a much better way to train the

perceptron. Let us start by defining the total error for a neuron with weights w:

E(w) ≡ 1

2

∑
i∈D

(yi − xT
i w)2

where D is the set of all training data. The E function is essentially the sum of squares of

all errors on the dataset D. We can differentiate E with respect to w:

∆E(w) ≡
[
∂E

∂w0

,
∂E

∂w1

, · · · , ∂E
∂wn

]
∂E

∂wi

=
∑
i∈D

(yi − xT
i w)(−xi)

The ∆E(w) is the gradient vector, with a component for each weight. We can adjust the

weights via:

wi = wi +−λ∆E(w)

6

where λ is the learning rate. The ∆E(w) points in the direction that increases E(w), so we

need the negative sign to adjust in the decreasing direction. This derivation is adopted from

Mitchell. [?]

The iterative version of the delta rule is:

wi = wi + λ(y − xTw)xi

This method has a smoother learning behavior than perceptron learning rule, and will con-

tinue to adjust w until it reaches an optimum value, even when all the examples are correctly

classified.

The function is identical to the non-thresholded Perceptron learning—it is amazing what

that small adjustment has done.

1.3 Least Squares

It turns out there is a more direct way to solve the weight adjustment problem. When the

target label y is a real number (and xs are numeric), the ‘labeling’ task becomes regression—

we are fitting some function to data points. Least squares finds a hyperplane that best fits

the xs. Our model is:

Xw = y

where X is a matrix with individual observables x as rows, y is a column vector of target

variables. This is the heart of linear algebra. It seems we should be able to solve Xw = y

for w by solving a system of linear equations (e.g. w = X−1y). For example:

X =

 1 2

1 4

 , y =

 2

3



7

1 2 3 4 5 6

1

2

3

4

5

Figure 6: Sample points for Least Squares regression.

We can solve it by inverting X, and solving for w

X−1 =

 1 2

1 4


−1

=

 2 −1

−0.5 0.5

 then

 w0

w1

 =

 2 −1

−0.5 0.5

×
 2

3

 =

 1

0.5


Unfortunately there are usually many more observables than ws, such as:

X =



1 1

1 2

1 2

1 4

1 5


y =



2

2

3

4

3


Such problems are overdetermined (X is not square), and training data contains noise—we

would not be able to fit a line through the data, because no such line exists, see Figure 6.

We can rewrite the problem as: y −Xw = γ, where γ is the error, either positive or

negative. We can square the error to get a positive number, then just as in Delta Rule,

8

minimize the square error. Rewriting the squared error function:

E(w) = ‖γ‖2 = (y −Xw)2

(y −Xw)T (y −Xw)

(yTy − 2wTXTy +wTXTXw)

One clever way of finding minimums (or maximums) is to differentiate, then set derivative

to zero, and solve. The derivative is:

∂E(w)

∂w
= −2XTy + 2XTXw = 0

Which leads to what are called ‘normal equations’:

XTXw = XTy which leads to: w = (XTX)−1XTy

If XTX is invertible, that is it, we can directly solve for w. If some columns of X are not

independent, then is XTX not invertible, and we need to make an adjustment. Adding λI

to XTX ensures the inverse always exists. λ here is some tiny number, like 0.001.

w = (XTX + λI)−1XTy

This is the regression solution for situations when X is N×M matrix, and N is much bigger

than M (has many more rows than columns). The XTX is a square matrix sized M ×M .

Its running time depends on inverting XTX—the algorithm is very fast for tall and skinny

9

1 2 3 4 5 6

1

2

3

4

5

Figure 7: Sample points plotted along with the ‘best’ line: y = 0.4x+ 1.4

matrices.

X =



1 1

1 2

1 2

1 4

1 5


, XTX =

 5 14

14 50

 , (XTX)−1 ≈

 0.92 −0.26

−0.26 0.09



Plugging that into w = (XTX)−1XTy we get

w ≈

 0.92 −0.26

−0.26 0.09

×
 1 1 1 1 1

1 2 2 4 5

×



2

1

3

4

3


=

 1.4

0.4



This example dataset is probably not the best illustration of line fitting—the points do

not appear to be on or near the line at all, see Figure 7 for the plot of w. That said, the

10

least squares algorithm found the ‘best’ line to fit them anyway.

1.4 Least Squares Duality

Now for a bit of magic (Shawe-Taylor & Cristianini (2004) [?] derivation). Using Sherman-

Morrison-Woodbury formula [?] we can rewrite (XTX + λI)−1XT as XT (XXT + λI)−1,

giving us another way of solving for w 1:

w = XT (XXT + λI)−1y

This is the regression solution for situations when X is N × M matrix, and N is much

smaller than M (has many more columns than rows). The XXT is a square matrix sized

N ×N . Its running time depends on inverting XXT .

Since most datasets have more records than attributes it seems this second derivation

does not gain us much. A useful thing to notice is that ws are now a linear combination of

inputs.

w = XTα α = (XXT + λI)−1y = (G+ λI)−1y

where Gij = xT
i xj. To apply this w to a new sample x:

wTx = (XTα)Tx = (XT (G+ λI)−1y)Tx = yT (G+ λI)−1Xx = αk

where k is a vector where each ki = XT
i x.

1This does not imply (XTX + λI)−1XT is equal to XT (XXT + λI)−1; pseudo-inverses are not exact.

11

Using our original example matrix, theXXT is much bigger thanXTX for this problem:

X =



1 1

1 2

1 2

1 4

1 5


, XXT =



2 3 3 5 6

3 5 5 9 11

3 5 5 9 11

5 9 9 17 21

6 11 11 21 26


Not surprisingly, XXT is not invertible (2nd and 3rd rows are the same). This is where the

λI adjustmenet becomes important. The (XXT + λI) is definitely invertible.

1.5 Discriminators

While the ‘least squares’ method described above is used primarily for interpolation and

extrapolation, a similar technique can be used for classification. [?] The idea is to find the

hyperplane that splits the provided training data.

Given a training set:

X = {(x1, y1), . . . , (xL, yL)}

where yi ∈ {−1,+1} indicates the class, we will use X+ as shorthand for all the positive

training cases, and similarly X− for all the negative ones. Our model is a hyperplane, with

weights w, and distance D, such that:

w1x1 + · · ·+ wNxN = D

With such a hyperplane, we get a notion of things being in ‘front’ of the plane and in the

‘back’ of the plane. If we plug x into the plane equation (represented by w and D), and get

a positive value, then x is in front of the plane, etc. For this section, we will use the same

12

1 2 3 4 5 6

1

2

3

4

5

Figure 8: Example data for classification.

dataset as before, Figure 8.

X+ =


1 2 +1

2 1 +1

2 3 +1

 , X− =

 4 4 −1

5 3 −1

 ,

1.5.1 Fisher’s Linear Discriminant

Perhaps the simplest idea for a classifier is to calculate means of positive and negative

examples: µ+ and µ−, then create a vector from one to the other and normalize:

w =
µ+ − µ−

‖µ+ − µ−‖

The D can be used to place the plane right between the two means, e.g.

D = w
1

2
(µ+ + µ−)

13

This simple method is a special case of Fisher’s Linear Discriminant (1936) [?], and it works

when covariance matrices for X+ and X− are mostly multiples of identify matrix: both X+

and X− are spheres around their respective means, with very little skew. When this is not

the case, we need to incorporate the covariance matrices (Σ+ and Σ−) into the calculation:

w = (Σ+ + Σ−)−1(µ+ − µ−)

We are still creating a hyperplane from one mean to the next—we just twist it by the inverse

of covariance matrices. For example, if X+ is particularly stretched out in direction i then

the resulting w will be more orthogonal in that direction i. The D for the hyperplane can

be chosen using the same method as above—or we can scale it by standard deviation away

from each class (for situations when deviations of X+ and X− are not the same).

1 2 3 4 5 6

1

2

3

4

5

Figure 9: Fisher’s Linear Discriminant, 0.88 ∗ x+ 0.47 ∗ y − 4 = 0

1.6 Maximal Margin Separator

When we apply the Fisher’s Linear Discriminant (0.88 ∗ x+ 0.47 ∗ y − 4) to the two closest

points, (2, 3) and (4, 4) we get −0.83 and 1.4 respectively. They are correctly classified as

14

far as their sign is concerned, but their scale is different—if each is the closest point to the

hyperplane, what makes one more positive than the other negative? In other words, had we

used just the closest points to build a linear discriminant we would get a different classifier.

1 2 3 4 5 6

1

2

3

4

5

Figure 10: The two closest points to Fisher’s Linear Discriminant are not the same distance
to the separating hyperplane.

The maximal margin separator is essentially the idea that to achieve maximum gener-

alizability, the separating surfaces should maximize distance to both negative and positive

examples.

Let us start with the linear hyperplane model, wTx = D, and assume that w is normal-

ized (has a norm of 1). We can rewrite this as: wTx − D = 0. For all x that are on the

hyperplane, this model will produce 0.

For other x that are not on the hyperplane, this model produces the distance from the

hyperplane to x. We would like to maximize this distance, provided x is on the correct side

of the hyperplane. In other words, maximize wTx−D subject to yi(w
Txi −D) ≥ 1 for all

training data i.

Suppose the maximum of wTx−D = γ, we can then divide out the γ:

wTx

γ
− D

γ
=
γ

γ
= 1

15

In other words, we can turn the maximization of wTx −D problem into the minimization

of ‖w‖ problem, subject to same constraints. Note that here w is not normalized.

A way to solve such optimization problems is to use Lagrange multipliers. We rewrite

the optimization problem as:

f(w, D) =
1

2
wTw −

∑
i

αi[yi(w
Txi −D)− 1]

Take derivatives, set to zero, and solve for w:

∂f(w,D)
∂w

= w −
∑

i αiyixi = 0 ⇒ w =
∑

i αiyixi

∂f(w,D)
∂D

=
∑

i αiyi = 0

The problem of course is that we need to solve for α before we solve for w. However, now

that we have a solution for w we can just plug into the original formula and simplify:

f(α) = 1
2

(
∑

i αiyixi)
T
(∑

j αjyjxj

)
−
∑

i αi

[
yi

((∑
j αjyjxj

)T
xi −D

)
− 1

]
= 1

2

∑
i

∑
j αiαjyiyjx

T
i xj −

[∑
i

∑
j αiαjyiyjx

T
i xj − 0−

∑
i αi

]
=

∑
i αi − 1

2

∑
i

∑
j αiαjyiyjx

T
i xj

Flipping the sign, we aim to minimize f(α):

min
α
f(α) =

1

2

∑
i

∑
j

αiαjyiyjx
T
i xj −

∑
i

αi

subject to αi ≥ 0 for all i, and
∑

i αiyi = 0. This is a simple Quadratic Programming

16

problem that can be solved by setting up a linear KKT2 system:

 0 yT

y H


 −D
α

 =

 0

1


where H ij = yiyjxixj, y = (y1, . . . , yL), 1 = (11, . . . , 1L). H is what is known as a Hessian

matrix, and α = (α1, . . . , αL) are Lagrange multipliers from the dual solution. Note that we

can directly solve for α and D (via least squares). We can then solve for w via:

w = XT [α× y]

where α × y is an element-wise multiplication. This w is not yet the maximal margin

separator—next section on sparseness addresses the maximal margin.

1.7 Sparseness & Support Vector Machines

Above we saw that we can build regression and classification models using robust solutions,

grounded firmly in linear algebra methods. The problem of course is the size of the G or H

matrix. If we have a moderate number of samples, perhaps 10000, then we are talking about

a non-sparse 10000× 10000 matrix—and inverting something like that is a challenge—if we

have a million samples, the whole solution becomes impractical.

A key insight comes from the α vector. This is really what we are optimizing. Perhaps

we can avoid solving for all of them at the same time? This is exactly the thinking behind

Support Vector Machines, first proposed by Vapnik (1963) [?, ?] and later developed by

many others.

The SVM algorithms iteratively solves for some subset of αs, and continue to iterate

2Karush-Kuhn-Tucker

17

until all the αs satisfy the KKT. At this point, for most practical problems, only a tiny

subset of the αs will be non-zero—meaning that only a tiny subset of the whole dataset is

contributing to the w. It also makes kernel appliation (Section 1.10) practical. Figure 11

shows an example of SVM for the example dataset.

1 2 3 4 5 6

1

2

3

4

5

Figure 11: The SVM discriminator: 0.89443 ∗ x+ 0.44721 ∗ y − 4.2485, The (2, 3) and (4, 4)
samples have αi = 1, the rest of the α vector is 0.

The mechanical question then becomes how to setup the iteration to efficiently clamp

down the value of most unimportant αs to zero. Practical considerations are: the iteration

has a matrix inversion as the inner loop—the more α values we try to solve for, the more

complicated this inner loop becomes.

Vapnik proposed a “chunking” algorithm. The key idea is that rows/columns with cor-

responding αi = 0 are irrelevant and can be skipped. Each iteration begins by collecting all

non-zero Lagrange multipliers from last step and the M worst examples that violate KKT

conditions (for some value of M). Since there is no hard control on how many non-zero

Lagrange multipliers may exist from iteration to iteration, this solution has unpredictable

runtime performance.

This was later improved by Osuna (1997) [?] who proposed to have a constant size matrix.

Every iteration would operate on the same number of Lagrange multipliers. Osuma also

18

proved that a large QP problem can be broken down into a series of smaller QP problems.

As long as at least one example violates KKT conditions, then the overall problem will

converge. Because the size of each sub-problem is fixed and limited, this solution can work

on arbitrary large inputs—each subproblem doing a fixed amount of work.

Osuna’s solution led Platt (1998) [?] to develop the Sequential Minimal Optimization

(SMO) algorithm, that uses just two Lagrange multipliers per iteration. It turned out that

this can be solved analytically, avoiding the whole QP optimization as an inner loop, and is

the fastest way of doing general SVMs right now.

Smola (2004) [?, ?] applied SMO ideas to regression—the Lagrange multipliers are

bounded to a certain margin around the hyperplane. Joachims (2006) [?] has developed

Boosting-like methods can be used to train linear SVMs in linear time. Syed (1999) [?]

developed methods to train SVMs incrementally.

1.8 Non-Linear Embedding

If we wanted to fit an exponential function, none of the above mentioned linear methods

would work. One easy tweak we could do is ‘embed’ our linear data in non-linear space.

We can do this by defining a non-linear function Φ, and transforming our data using that

function. In other words, instead of working with x, we would work with Φ(x).

The function Φ can be anything at all. It can reduce or increase the dimensionality of

the sample point x. For example, a 2-dimensional x may be turned into a 3-dimensional

Φ(x):

Φ(x1, x2) = (x21, x
2
2,
√

2x1x2)

This has the capacity of turning our ‘learning lines’ method into a ‘learning curves’ method.

To see why this works, consider fitting points to y = BeAx. We can take log of both sides

to get ln(y) = Ax + ln(B), which is linear. The Φ embedding would apply the ln function

19

to Y , and upon output, apply exponential to get B.

Similarly, to fit power function y = B ∗ xa we take log of both sides to get ln(y) =

ln(B) + a ∗ ln(x), which is now also linear.

To fit polynomials we “embed” higher dimensions that are powers of x. For example,

instead of 

1 2

1 3

1 5

1 7

1 11

1 13


which would fit a line, we can fit a 3rd degree polynomial just by tweaking that matrix to

be: 

1 2 22 23

1 3 32 33

1 5 52 53

1 7 72 73

1 11 112 113

1 13 132 133


The resulting solutions will have the form y = D + Cx+Bx2 +Ax3. This can be extended

to any degree polynomial you care to fit.

1.9 Logistic Regression

Logistic regression is a form of non-linear Φ embedding discussed above. Often we have

problems that require learning and extrapolating probabilities—and those are always in the

20

0 to 1 range. To use a linear model, we need to project that 0 to 1 range onto the −∞ to

+∞ range. We do this via the logit function

logit(x) = log

(
x

1− x

)

The logit function is the log of the Odds ratio, and is illustrated in Figure 12. Notice that

‘probabilities’ that are very close to 1, will get an extremely high y value (we need to clamp

it at some high value, since ∞ is kind of hard to represent on a computer), and vice versa.

0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10 log(x
1−x)

Figure 12: The logit function.

The embedding transforms the y target probability into logit(y). The model is trained

on the transformed values. Once we have our linear model, the outputs of wTx will be linear

and in −∞ to +∞ range. We need to turn those into probabilities—in other words, we need

the inverse of the logit function, which happens to be the sigmoid function, Figure 13:

sigmoid(x) =
1

1 + e−x

The output of logistic regression is determined via sigmoid(wTx) and it is always a value

between 0 and 1; something that can be interpreted as ‘probability’.

21

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1 1
1+e−x

Figure 13: The sigmoid function.

1.10 Kernels

Kernels are just a clever method to do Φ embedding, utilizing the G matrix computation

pipeline, without actually computing the Φ embedding. For example (due to [?]):

K(Φ(x),Φ(z)) = (x21, x
2
2,
√

2x1x2)
T (z21 , z

2
2 ,
√

2z1z2)

= x21z
2
1 + x22z

2
2 + 2x1x2z1z2

= (x1z1 + x2z2)
2

= (xTz)2

In other words, we can avoid a lot of calculation by simply squaring the elements of the

G matrix. There are many more of these kernels—some even embed the data into an

infinite dimensional space, such as the Gaussian kernel—this would be impossible to calculate

without using this kernel trick.

Kernels have become a key piece in algorithm creation—regression and classification are

domain and data independent: they will work on any data in any domain. Kernels on the

other hand are often crafted along with data preparation.

Kernels take any two data examples, and produce what amounts to as a similarity score.

This could be calculated via an algorithm, heuristically assigned, etc. For text data, this

could be counting words. For image data, comparing histograms, etc.

22

