Confusion Matrix

Alex Sverdlov alex@theparticle.com

1 Introduction

We wish to automate a decision making process. Decisions often lead to actions. Actions have costs (also known as utility, or economic gain/loss). Bad decisions lead to incorrect actions, which often have much greater costs. Obviously what we want to do is make decisions that minimize expected costs.

2 Confusion Matrix

A classifier assigns measurement instances to one of c_1, \ldots, c_N classes. A confusion matrix is a probability table:

	Assigned					
		c_1		$\mid c_j \mid$		c_N
True	c_1		• • •			• • •
	÷					
	c_i			$P_{TA}(c_i, c_j)$		
	÷					
	c_N					

Such a table can generally be estimated by running the classifier on a test dataset. The diagonal elements represent correct classification. We can get a probability of correct assignment by summing the diagonal elements:

$$P_{correct} = \sum_{i=1}^{N} P_{TA}(c_i, c_i)$$

3 Economic Gain

A measure of correctness isn't very useful without some measure of how costly the errors are. Similar to the confusion matrix, there's also the economic gain matrix, which assigns a value to each pair:

		Assigned				
		c_1	• • •	c_j	• • • •	c_N
True	c_1				• • •	
	:					
	c_i		• • •	$e(c_i, c_j)$		• • •
	:					
	c_N					

The value can be positive or negative. Using the economic gain matrix along with the confusion matrix we can determine the expected economic gain across all pairs:

$$E_{gain} = \sum_{i=1}^{N} \sum_{j=1}^{N} e(c_i, c_j) P_{TA}(c_i, c_j)$$

This gets us a single number for the decision rule.

4 False Positives/Negatives

If there is a target category that we are particularly interested in then terminology changes a bit. For example, if we're trying to detect fraud: c_1 , vs normal activity c_2 , then we get:

		Assigned				
		c_1	c_2			
True		true positive				
	c_2	false positive	true negative			

5 Decision Rules

We can picture a decision rule as a table that maps inputs to outputs:

	Output					
		c_1	• • •	c_j	• • •	c_N
Input	d_1				• • •	•••
	÷					
	d_i	0	0	1	0	0
	÷					
	d_M	• • •			• • •	

The above decision rule maps d_i to c_i .

A bit more abstract, we can flatten this table. Since all the entries are 0 or 1 we end up with a tuple of $N \times M$ bits. Meaning a decision rule is a corner point on a unit hyper-cube, of $N \times M$ dimensions.

Any such point represents a decision rule and a linear combination of these decision rules is also a decision rule (a stochastic one).

6 Receiver Operating Characteristic Curve
TODO