1 Indexes

The purpose of an index is much like the purpose of an index in a book: to help us find the
important bits quickly.

1.1 Dense vs Sparse

Just as with book indexes, sparse database indexes don’t point to individual records, but
to ‘pages’ (chunks of memory stored on the disk). The subsequent linear (or some other)
search of the page in RAM is insignificant to the time it takes to read the page from disk.
Dense indexes point directly to individual records. Sparse indexes are generally more
space efficient, as they don’t need to point to individual records.
Many databases allow you to tweak the data block size that is used—which has an impact
(both good and bad) on indexes, disk access performance, and database memory usage.

1.2 Clustered vs Unclustered

Many indexing solutions suffer from the ‘need to read the whole page to access a record’
problem. This is especially true for indexes on low cardinality columns, such as gender, zip
code, state, etc. For example, an index on ‘state’ field will likely result in an index that
references all of the database pages, so looking for every customer in ‘NY’ wouldn’t be 50
times faster than scanning the whole database outright without an index.

To overcome the above problem, we can use clustered indexes. The creation of a clustered
index re-arranges the actual data in the table to be in the order of the index. So sequentially
retrieving records only for ‘NY’ state wouldn’t sequentially read the whole database, but
only a few data blocks (all of which will mostly store data with state ‘NY”).

Since physical data on the disk can only have one particular order, a table can have
only one clustered index defined—the rest of the indexes need to be unclustered. In many
databases, by default, the primary key index is clustered.

Clustered indexes are often stored in the data file along with the relation (a clustered
index essentially represents the order of data in the table). Unclustered indexes generally
use separate files.

1.3 B Trees

Balanced trees are the best way of storing ordered data, as access time grows logarithmically
with the number of records they store. For example, if we take a binary tree storing 1 billion
records, it will only take at most 30 comparisons to find any individual record.

B Trees, either B-Trees or B+Trees, are balanced trees, usually wider than binary (3-5
way are not uncommon), and are designed for easy on-disk manipulation. B-Trees store data
on every node, while B4+Trees only store data on the leafs.

B Tree indexes work well on columns with large cardinality (unique, or almost unique
columns). If indexed columns have few values, then we hit the ‘need to read the whole page
to access a record’ problem (might as well not use an index).

B Trees are usually the default index type in most databases.



1.4 Bitmap Index

Bitmap indexes are designed specifically for low cardinality columns—where a column only
has 50 (or 300) or so distinct values.

The index is essentially a 2D bitmap (2D array) where rows represent different values,
and columns represent different records that are being indexed. If we index ‘state’ in the
address table, that has 50000 records, the index will have 50 or so rows, with 50000 columns.
Such indexes are often compressed, so storage requirements are relatively low (compression
is usually RLE, or Run Length Encoding)

When searching for a particular value, lets say state is ‘NY’, out of this 2D bitmap, we
would quickly pick out row with ‘NY’—this gives us a list of bits, where the location of each
bit represents the row number. If the bit is set, we retrieve that row.

Bitmap indexes work great in conjunction with other bitmap indexes. For example,
imagine we have a table with many low cardinality columns, and we wish to provide for
fast queries: imagine a ‘car’ database, with columns such as ‘make’, ‘model’; ‘year’; ‘color’,
‘seats’, etc., Each of these columns would only have a few values, etc.

If we create a bitmap index on all of these columns, individually, and then select a
particular ‘make’, ‘year’, and ‘color’ from the table, we would hit the ‘make’ index, ‘year’
index, and ‘color’ index, each one will retrieve a row of bits, representing record numbers.
But the cool thing is that those record numbers are ordered (first bit is first record, etc.).
So we simply do a simple merge of the three lists to quickly find row numbers that match
all three criteria (‘make’ ‘year’, and ‘color’).

1.5 Bitmap Join Index

We can also define a bitmap index on a join condition, which will store rows from tables
that join. For example, if we have a 3-way join, we may create an index:

create bitmap index blahidx

on (tablel.somevalue, table3  somevalue)
from tablel a,table2 b,tabled c

where a.id = b.id and b.id2 = c.id2

Any selects that involve these three tables using this join condition will now use this index,
and will be very fast (as it wouldn’t have to go through the tables to perform the join—just
extract joined row numbers from the index).

1.6 Function Indexes

Most databases allow users to create indexes that include functions (either built in functions,
or user defined functions). For example, you may be able to create an index on the first 4
characters of a last name, via:

create index blahidx on customer (substr(lname,1,4))



1.7 Hash Indexes

Hash indexes are essentially function indexes, where the function is a ‘hash’ function; returns
a distinct hash code. They're useful when indexing wide columns (if a column has 30
characters, for example).

The limitation with hash indexes is that you cannot do comparisons nor ranges on them.
Queries such as:

select =
from customer
where lname < ’blah’

Will not benefit from hash indexes (the query will end up doing a full table scan).

1.8 Index Tables

Some databases support storage of data in indexes. In other words, instead of creating a
table, and then having an index on every column, you can simply create an index with all
the columns, ie:

create table customer (
customerid int,
Iname varchar (30),
fname varchar (30),
email varchar(60),
primary key(customerid)
) ORGANIZATION index;

The above is for Oracle, though I'm sure other databases support similar features. When-
ever you query this table, the optimizer will recognize that it is an ‘index’, and retrieve it
accordingly.

2 Join Types

Whenever you write database queries, the optimizer figures out the best way to perform
the query. It does that by parsing the SQL statemnets, generalizing them into relational
algebra, then, using huristics, transform the relational algebra expression into several other
expressions, pick which one ‘seems’ like it would execute fastest (depending on past statistics,
or assumed table values, or maybe after running a quick test against actual data).
Depending on the size of the tables, the database will pick which kind of joins to use.

2.1 Nested Loop Join

A nested loop join is exactly what it says. Given two tables, of size n and m respectively,
the nested loop join will do O(n x m) loops. The loops look somewhat like this:
for (i=0;i<tablel.length;i++){
for (j=0;j<table2.length; j++){
if(tablel [i].joinkey = table2[j].joinkey ){
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out (tablel[i],table2[j]);

}

The problem with this approach is when both tables are relatively large. If each table is
100000 elements, then this loop will run for 10 billion times, which is bad.
This join is great when one of the tables is very very small.

2.2 Hash Join

Most modern databases primarily use Hash Joins. These work by first looping through the
“smaller” (as percieved by optimizer) table and storing the values in a hash. The hash key
is derived from the join keys. Then looping through the larger table, and picking at the
hash for matched values. ie, joining tablel and table2 on id and name, with assumption that
tablel is smaller.

for (i=0;i<tablel.length;i++){
hashkey = hash(tablel[i].id,tablel[i].name);
hash [hashkey] = tablel[i];

}
for (j=0;j<table2.length;j++){

hashkey = hash(table2[j].id,table2[j].name);
t1lval = hash[hashkey]
if(tlval and tlval.id = table2[j].id and
tlval.name = table2[j].name){
out (tlval ,table2[j]);

}

The assumption is that hash operations are fast (ie: constant time). If hash operations
are constant, then speed is the cost of looping thorugh the two lists independently, ie:
O(n 4+ m). If hash operations are logarithmic (ie: red-black tree implementation), then cost
is O(nlgn +mlgm).

2.3 Merge Join

Merge join is the ‘old” method of doing table joins (this is what you’d do on a mainframe).
The idea is that you first sort both tables by the join keys, and then loop through both tables
simultaneously, picking out records that match (the merge function is similar to mergesort).

The cost is primarily sorting the tables (which may involve disk swaps, as tables may
be large), and then subsequently doing a linear join. So... O(nlgn + mlgm + n + m) or
something like that. Obviously the O(n + m) are irrelevant. Note that we are assuming
O(nlgn) sorting—many real world implementations used radix like sorts, which have linear
running times.



2.4 Index Join

Index joins are essentially “merge joins” except instead of sorting the tables, we use the index
(which is essentially the sorted view of some columns). This join type is only useful when
only a handfull of records are involved—if a whole table join is nessasary, let the database
pick a method (it will likely pick hash join, which will be faster than index join for the whole
table).

2.5 Colocated Join

When joining tables that are split across multiple machines we need to first ensure that the
pieces to be joined are colocated on the same machines. This involves taking a hash of the
join key, and moving the records to the machines identified by those hashes. After this data
move operation, each machine can perform a local join.

for (i=0;i<tablel.length;i++){
hashkey = hash(tablel[i].id,tablel[i].name);
send_to_machine (tablel [i], hashkey % N);

}

for (i=0;i<table2.length;i++){
hashkey = hash(table2[i].id,table2[i].name);
send_to_machine (table2[i], hashkey % N);

}

// nmow perform a local join on each machine.

Where N is the number of machines in the cluster.

2.6 Broadcast Join

For joins across a cluster, if one of the tables is much smaller (perhaps only a million records),
then the smaller table can be broadcast (or replicated) to all the nodes in the cluster. After
this broadcast, each node can perform a local join (without further data movements).

This is sometimes called a “map side join”.

2.7 Bloom Filters

Cocolated joins ship the entire dataset across the network. For large joins across the cluster,
that we know are sparse, we can minimize the amount of data sent by creating bloom filters.

We start with several different hash functions, pass join key through each hash function,
for each hash code, set a bit in a big bit vector (perhaps 1mb in size). That bit vector is
then our “filter,” and is sent across the network.

bitvector [lmb in size |;
for (i=0;i<tablel.length;i++){
for (j=0;j<hashfunc.length;j++){
hashkey = hashfunc[j]|(tablel[i].id,tablel[i].name);
bitvector [hashkey % bitvector.length] = 1; // set bit



}

// ship the bitvector across the cluster
The reciever can run through its keys, pass them through each hash function, and if all
the hash codes have an appropriate bit set, then that record is selected as a potential join
candidate—only those records that can potentially join will be shipped across the network
for the actual cocolated join.
for (i=0;i<table2.length;i++){
boolean selected = true;
for (j=0;j<hashfunc.length && selected;j++){
hashkey = hashfunc[j]|(table2[i].id,table2[i].name);
if( bitvector [hashkey % bitvector.length] != 1){
selected = false; // skip if at least one bit is not set

}

}
if (selected){
// select record for cocolated join

}
}
// do colocated join with the selected records.

Note that just because all the bits line up for a particular key, it does not mean it will
actually join. The guarantee is one sided—if one of the bits is missing, then we know this
record won’t join, but we don’t have a positive way until we actually perform the join.



