1 Dealing with Hierarchies

There are many real world situations where the relational model doesn’t fit naturally. One of
them are generalizations and specializations from object oriented languages. Others involve
recursive data structures, such as as trees.

2 Generalization/Specialization

The terms ‘generalization’ and ‘specialization’ are fancy names to refer to the parent and
child classes. For example, if we define (in Java):

public class Square extends Shape {
// some code.
}

We've defined a ‘Square’ class, with all of the properties of a ‘Shape’. Every square is a
shape (that’s generalization), but not every shape is a square (that’s specialization).

The first task we’re generally concerned with is how to store the data in the database.
For this, we have several options: store data in multiple tables, store data in one wide table,
or some hybrid of the two.

2.1 Multiple Tables

Storing data in multiple tables will involve creating two tables. The shape table is the
‘parent’:
create table SHAPE (
shapeid int ,
typ int | — 4f 1, then square, etc.
description varchar(10),
);
The square table is a bit tricky. It will also have the shapeid:

create table SQUARE (

shapeid int |

side int — size of the side.
);

Everytime we grab object data that extends Shape, we need to first select data from
SHAPE, then depending on the ‘typ’ field, pick the right table, and select the ‘extra’ data
from the appropriate table using the primary key from the parent table.

Notice that in this scheme we can easily have sub-sub classes. The only practical concern
is that grabbing these things causes an extra database hit, something you should always
avoid.

2.2 One Tables

Another approch is to store everything in one large table, with possibly many nullable fields.
For example:



create table SHAPE (

shapeid int ,

typ int | — 4f 1, then square, etc.
description wvarchar(10),

side int | — square property

radius int , — circle property

— etc

);

Now, if ‘typ’ indicates a square, the radius attribute will be null. If ‘typ’ indicates a circle,
then radius will be set, while side will be null. This is something that will need to be handled
at the application level—as databases aren’t usually flexible enough to enforce things at such
a level.

3 Trees

Storing trees and other hierarchical data presents an extra complication. In procedural
languages, we setup a node based data structure, ie:

// java binary search tree node
class Node {
public Comparable data;
public Node left ,right;
public Node(Comparable d,Node 1,Node r){

data = d;
left = 1;
right = r;

}

We can then write code to manipute these notes relatively easily, ie:

// add stuff into a binary search tree.
public Node insert (Node t,Comparable i){
if(t = null)
return new Node(i,null 6 null);
if (i.compareTo(t.data) <= 0){ // insert into left
t.left = insertTree(t.left ,i);
}else{ // insert into right
t.right = insertTree(t.right ,i);
}

return t;

}

One may insert a bunch of items into such a tree via:
Node t = null;
for (int i=0;i <10;i++){
t = insert (t,new Integer ((int)(Math.random ()*x100));
}



Now, this all seems very easy, but how do we do similar things in a database? There are
primarily two methods that stand out above the rest: one is to use some sort of linking
between “nodes” (just like in the Java example above), and another method is to encode
the path from root to the node in some attribute, usually via numerical values or via some
‘path’.

3.1 Adjacency Model

We start by defining our “node” data container. For example, dealing with the standard
‘manager’ example, we can create a simple employee table:

create table EMPLOYEE (
employeeid int
name varchar (20),
managerid int
— etc

);
We can obviously have other fields in there (and define indexes, etc), but the point is to have
some link back to the table itself. Note that unlike in Java, this relationship works both

ways. For any manager, we can easily get all employees, and for any employee we can easily
find the manager.

3.1.1 Non-Traversal Traversal

Often whenever you’re faced with such data structures, you don’t really need to loop through
all nodes. For example, imagine this is a web application to display employee information.
We have a page to display employee information, and a link to the manager. It takes 1
database hit to render that page. Similarly, when the user clicks on the manager link, it’s
also trivial (1 database hit) to grab manager information.

This can often be applied to online file repositories. For example, you can manage a
directory structure in a database using such links, and because you don’t ever traverse the
whole tree in any one query, there are no issues (users just clicks on sub-directories, or the
parent directory).

3.1.2 The Traversal: connect by

There are several ways of traversing this data. If you only need a few layers (lets say this is
a forum, and you only wish to display the top 2 layers), then you can do an outer self join.
For example, to grab manager and all of the employee information for that manager, you
might do:

select
from EMPLOYEE a outer join EMPLOYEE b
on a.managerid=b.employeeid

This way, you'll get just 2 layers of this ‘tree’. Once in a while, this may not be enough, and
you’ll need to resort to the actual traversal.



The bad news is there’s nothing in the standard SQL to allow you to do the hierarchy
traversal—so whatever method we come up with will be database dependent.

One obvious solution is to use PL/SQL (or T-SQL) to traverse the tree. This is generally
and should be avoided (in fact, avoid procedural things whenever coding database code).

Another solution is presented by Oracle’s ‘connect on’ feature. For example, we can find
out all the employees who work under a certain manager (managerid=42), simply by doing:

select employeeid ,name

from EMPLOYEE

connect by managerid = prior employeeid
start with managerid=42

So if there’s 8 layers of managers between you and managerid=42, you’d show up in the
query. Note that you can reverse the ‘connect by’ clause, to lookup all managers for a
particular employee, etc. For more info, google for it!

3.1.3 The Traversal: connect by Sample

We start by defining our ‘node’ table:

drop table mynode;

create table mynode (
nodeid int
parentid int,
name varchar (100)

);
We then create a short Perl script to generate data for our table (you can do this by
hand, or let the computer do it).

use strict;

# insert value into a binary search tree (keep track of parent).
sub insert {
my ($t,%0,%p) = @_;
return {o=>%0,p=>%p} unless $t;
if (S0 <= $t—>{o}){
$t—>{left } = insert ($t—>{left },$0,8t);
}else({
$t—>{right} = insert ($t—>{right },%0,8t);
¥

return $t;

}

# populate the tree (balanced binary)

my $t;

for (50,25,13,30,7,15,28,35,75,65,85,60,67,80,90){
$t = insert ($t,$_);

}



# output the tree
my Qs = ($t);
while (@s) {
my $s = shift Qs;
printf(”insert._into.mynode_values(%d,%d,’ s%d:%d ’);\n” ,
$s—>{0},8s—>{p} ? $s—>{p}{o} : O,
$s—>{o},$s—>{p} ? $s—>{p}{o} : 0);
push @s, $s—>{left} if $s—>{left };
push @s, $s—>{right} if $s—>{right };
¥

The output of the program will look something like this:

insert into mynode values(50,0,’s50:0");
insert into mynode values(25,50,’s25:50 )
insert into mynode values (75,50, s75:50 ")
insert into mynode values(13,25,’s13:25");
insert into mynode values(30,25,’s30:257)
insert into mynode values (65,75, s65:75 ")
insert into mynode values(85,75,’s85:75")
insert into mynode values(7,13,’s7:13");
insert into mynode values(15,13,’s15:137)
insert into mynode values(28,30,’s28:30")
insert into mynode values(35,30,’s35:30);
insert into mynode values (60,65, s60:65 ")
insert into mynode values (67,65, s67:65 ")
insert into mynode values(80,85,’s80:85")
insert into mynode values(90,85,’s90:85);

We can now write a sql query to do a breadth first traversal of the tree, starting with
node 25 (left child of root):

SQL> select nodeid,parentid,level,name
2 from mynode

3 connect by prior nodeid = parentid

4 start with nodeid=25

5 order by level,nodeid;

NODEID PARENTID LEVEL NAME

25 50 1 s25:50
13 25 2 s13:25
30 25 2 s30:25
7 13 3 s7:13
15 13 3 s15:13
28 30 3 s28:30
35 30 3 s35:30

7 rows selected.



3.1.4 The Traversal: with
There’s also the “with” feature, which appears in other databases. Here’s how this works:

with temptable (employeeid ,name) as (
— base case, get all employees whose manager is managerid=42
select employeeid ,name
from employee
where managerid=42
union all
— wunion all with the recursive case
select employeeid ,name
from employee, temptable
where employee.managerid = temptable.employeeid

)

select employeeid ,name from temptable;

In essense, we setup a recursive table. We need to specify the base case (where do we start),
and union that with the step case, how do we get to the next record (join with original

table).

3.2 DMaterialized Path Model

With the materialized path model, we store the path from root node upto the ‘node’ we are
dealing with. For example:

create table employee (

employeeid int |
name varchar (20) ,
path varchar (100)

);
The path for the top most manager may be something like “1”. The 2nd layer of managers
will have paths such as: “1.17, “1.2”7, “1.3”, etc. The children of “1.3” node will have paths
like “1.3.17, “1.3.27, “1.3.3”, etc. This string just keeps on growing.

This approach is very flexible and doesn’t require a lot of processing time—which is why
many forums that support nested comments implement this.

To get all employees under a certain manager, simply do:

select e.employeeid ,e.name

from employee m, employee e

where m.path like e.path|| %’ ;
and m.employeeid=42

The reason the above works is because employees (or rather child nodes) will always have a
longer ‘path’ string than the parents.



4 XML Databases

For hierarchical data, using XML to store data may be the most natural approach. Parsing
XML is surprisingly easy. The below Perl module, pxml.pm, parses and queries XML data:

## Particle s simple XML Module, Version 1.1

A (not designed for speed)

## (C) 2003—2008, Alex S. <alex@theparticle.com>
## http://www. theparticle.com/

package pxml;

use strict;

## create a mew instance of xzml object.

sub new {
my (3$class, %args) = Q_;
my $this = { %args };
if ($args{file }){
my $root = parse(loadFile($this—>{file }));
$this—>{$_} = $root—>{$_} for keys %{Sroot };
}

return bless $this, $class;

# xml parser; returns root node

sub parse {
local $_ = shift;
my Qstrings;
s{ <!\[CDATA\[(.*?)\]\] >} {push @strings ,$1; <#’ .$#strings.’/>"}xsge;
s|<!——x7——>||gs; s|<\7.%7\?>||gs;
push my @stack, { type=>’root’, value=>""", ch=>[] };
while (m|(.x?) <(.+7) >|gs){
for (my $t = $1){
s/ \s+[\s+8//gs; s/\s+/ /gs; s|\&lt;[<|gs; s[\&gt;|>]gs;
s[\&amp;|\&[gs; s|\&apos;|\ "|gs;.s[\&quot;|\”[gs; #""
push @{ $stack[—1]—>{ch} },
new pxml(type=>'text’,value=>$_) if length;
}
my $t = $2;
if($t !" m|/|){ # opening tag
my ($tag,$attr) = split /\s+/,8t,2;



push Q@stack ,
new pxml(type=>’tag’, value=>$tag, attrib=>{}, ch=>]]);

$stack[—1]—>{attrib }{$1} = $2
while($attr =" m|\s*x(.x?)="(.%?7)"|g);
telsif ($t =" s|"/||){ # closing tag

my $s = pop @stack:
push @{ $stack[—1]—>{ch} },$s if $t eq $s—>{value};

telsif ($t =" m|#(\d+)|){ # CDATA section

push @{ $stack[—1]—>{ch} },
new pxml(type=>’text’,value=>$strings[$1])

if $strings[$1];

telsif($t =" s|/$|]){
my ($tag,$attr) = split /\s+/,$t,2;

my $o =
new pxml(type=>’tag’,6 value=>$tag, attrib=>{}, ch=>][]);
$o—>{attrib }{$1} = $2 while($attr =" m|\sx(.x?)="(.%x7)"|g);
push @Q{ $stack[—1]—>{ch} },%0;
¥
¥
return $stack [0]{ch }[0];

# query code

sub query {

my ($t,8q) = @
my Qstack = ([’/’.$t—>{value},$t,$t—>{type}]);
my Qmatched;
while (@stack){

my ($name, $val, $type) = @Q{pop @stack };

if ($name="m/\Q3q\E$/1){

push @matched, $val;
telsif (Stype eq ’tag’){

push @stack ,
[$name. /7. $_—>{value},$_, "tag’, |

for grep { $_—>{type} eq ’'tag’ }
reverse @Q{ $val-—>{ch} };

push Q@stack ,
[$name. /7. $_. 8 $val—>{attrib }{$_},, |

for sort keys %{$val—>{attrib }};
my $text = join ('’ ,map { $.—>{value} }
grep { $_—>{type} eq ’'text’ }
reverse @Q{ $val—>{ch} });
push @stack ,[$name.’$’  $text ,,] if Stext;



return wantarray ? @matched : $matched [0];

# load file

sub loadFile {
local $_ = shift;
open my $in,$_ or die $!;
local $/=undef;
return <$in >;

}
L;
So given an XML file such as:

<meta>

<!— tables —>

<table name="user”>

<col name="1id” type="number” precision="10" auto="Y" pkey="Y" />
<col name="username” type="varchar” length="64" required="Y" />
<col name="password” type="varchar” length="64" required="Y” password="Y" />
<col name="name” type="varchar” length="64" required="Y" />
<col name="email” type="varchar” length="64" required="Y" />
<uniq name="username” />

</table>

<l— .. —

</meta>

The below code can be used to read (query, etc.) such files:

#!/usr/bin/perl

# xml parser test script.
use strict;

use pxml;

my $meta = new pxml(file=>"metadata.xml’);

# loop for all tables.

for my $table ($meta—>query(’/table’)){
# find name of table.
my $name = $table—>query(’/name$’);
print "drop.table_$name;\n\n”;
print ”create_table_$name.(\n”;

# loop for all columns in this table.
print join 7 \n”, map {

# get column information

my $name = $_—>query(’/name$’);
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my $type = $_—>query(’/type$’);
my $length = $_—>query(’/length$’);
my $auto = 'AUTOINCREMENT’ if $_-—>query(’/auto$’) eq 'Y’;
7 L...$name.$type.” .($length ? 7 ($length)” : 77).” _$auto”
} $table—>query(’/col’);

# get name of all columns marked as primary key.
my $pkey = join(’,’ ;map { $_—>query(’/name$’) }
grep { $_—query(’/pkey$’) eq 'Y’ } $table—>query(’/col’));
# output joined parimary key (ie: kl1,k2,k3, etc.)
print 7 \n_.___primary._key($pkey)” if $pkey;
print *\n);\n\n":

}
The output is about what you’d expect (thought no very polished):

drop table user;

create table user (
id number AUTOINCREMENT,
username varchar (64) |,
password varchar (64) |,
name varchar (64) |,
email varchar (64) |,
primary key (id)

)

This is something that can obviously be expanded upon.

4.1 Nested Sets

The idea behind nested sets is for each node to have a “left” and “right” integers, which
represent a range. All the children nodes of a parent would all into that range.

For any child node, it’s trivial to get all the parents (just look for any other nodes whose
range includes that child node).

For any node, it’s trivial to get all the children (just look for any nodes that are included
in the range of the node).

The problem is now to come up with the “left” and “right” integers: these are assigned
by a preorder depth-first traversal of the tree—normally requires iterating over a tree with
either a stack or a temp table functioning as a stack. This isn’t practical for large databases.

There are parallel methods for assigning these numbers, those will be discussed in class.
The gist is to count number of descendants per node, then useing that number generate
left /right integers per node.

5 Finding Root

If we have records such as: rec(id,parentid) then we have nodes of a tree. A very
common problem is to find the root of such a tree. For a tree of maximum depth N, we can
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find the root in log N time.
In pseudo-code:

create table parent as
select id, parentid, 1 lvl, false as done
from somedata;

Then iterate a few times. For example, iterating 24 times finds roots of all trees that are 224
deep.

Here’s the pseudo-code for the iteration: while there are records with done flag set to
false and iteration counter less than 24, loop:

drop table t1;
create table tl1 as
select p.id, coalesce(g.parentid ,p.parentid) as parentid
coalesce(g.1vl ,0) + p.1vl as Ivl,
coalesce(g.done,true) as done
from parent p
left outer join parent g
on p.parentid=g.id
where p.done=false
union all
select id, parentid, lvl, done from parent where done=true;

drop table parent;
alter table t1 rename to parent;

Note that in the end, we end up with the parent table, where for each id the parnetid
points to the root of the tree.

6 Finding Ancestors

For a tree, it’s often useful to be able to find ancestors of every node.
Pseudo-code:

create table ancestor as
select id, parentid as aid, 1 Ivl
from somedata;

As before, we do iterations. Once dataset stops growing, or we reach maximum iteration
count (247), we can quit. Loop:

create table tl1 as
with blah as (
select a.id,coalesce(b.aid,a.aid) aid, coalesce(b.lvl,0)+a.lv]l as Ivl
from ancestor a
left outer join ancestor b
union all
select id ,aid,lvl
from ancestor
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)

select id,aid ,min(1vl) 1vl
from blah
group by id,aid;

drop table ancestor;
alter table tl1 rename to ancestor;

In the end, we end up with the ancestor table, which for each node identifier has an
ancestor id, along with the 1vl, which tells us how far away that ancestor is from the node.
The 1vl can be used to find the closest ancestor with a particular property.

7 Finding Connected Components

When working with graphs, we often want to identify connected components. This too can
be done in logarithmic time.
Lets assume we have a link table.

create table cntn as
select fromid as a, toid as b
from somedata;

Then we’ll need to create a 2-way link:

create table ccs as
with blah as (select a,b from cntn union all select b,a from cntn)
select distinct a,b from blah;

Iterate for a few times (247). Keep counts of records to avoid exploding (if everything is
connected to everything else, we don’t want to square our dataset).

We'll need to maintain an iteration counter, current count of rows, and some maximum
threshold count, perhaps 20 times the starting record count.

While current record count doesn’t match previous iteration record count, and record
count doesn’t exceed the maximum threshold, do:

create table tl1 as
with blah as (
select a.a, b.b
from ccs a
inner join ccs b
on a.b=b.a
where a.a!=b.b
union all
select a,b from css
) select distinct a,b from blah;

drop table ccs;

create table ccs as

with blah as (select a,b from tl1 union all select b,a from t1)
select distinct a,b from blah;
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Note that in the end, we end up with table ccs.

We need to check the termination condition: if previous iteration count matches current
iteration count then success: we found all connected components.

If iteration count reached limit, then some paths are too long: greater than 2pathiength

If record count is higher than maximum threshold record count then we encountered
some very large connected components (perhaps everthing is connected to everything else?).

The last step is to find the connected component for each identifier.

create table cc as

select a, when a<min(b) then a else min(b) end as ccid
from ccs

group by a;

8 Conclusion

Hierarchical data is a pain in the neck when you have to deal with it in a database.
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